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Abstract

The performance of high temperature composites can be significantly affected by the

presence of residual stresses. These stresses arise during cooling process from fabrica-

tion to room temperature due to mismatch of thermal expansion coefficients between

matrix and fiber materials. This effect is especially pronounced in metal matrix and

intermetallic composites. It can lead to plastic deformations, matrix cracking and

fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques

for residual stress assessment in composites is addressed. A novel technique for ab-

solute stress determination in orthotropic materials from angular dependencies of

ultrasonic velocities is described. The technique is applicable for determination of

both applied and residual stresses and does not require calibration measurements on

a reference sample. The important advantage of this method is that the stress is

determined simultaneously with stress-dependent elastic constants and is thus decou-

pled from the material texture. It is demonstrated that when the principal plane

stress directions coincide with acoustical axes, the angular velocity data in the plane

perpendicular to the stress plane may be used to determine both stress components.

When the stress is off the acoustical axes, the shear and the difference of the normal

stress components may be determined from the angular dependence of group veloc-

ities in the plane of stresses. Synthetic sets of experimental data corresponding to

materials with different anisotropy and stress levels are used to check the applicabil-

ity of the technique. The method is also verified experimentally. A high precision

ultrasonic wave transmission technique is developed to measure angular dependence

of ultrasonic velocities. Examples of stress determination from experimental velocity

data are given. A method is presented for determination of velocities of ultrasonic

waves propagating through the composite material with residual stresses. It is based



on the generalized self-consistent multiple scattering model. Calculation results for

longitudinal and shear ultrasonic wave velocities propagating in the perpendicular to

fibers direction in SCS-6/Ti composite with and without residual stresses are pre-

sented. They show that velocities changes due to presence of stresses are of order

1%.
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Chapter 1

MODELING OF WAVE

PROPAGATION IN STRESSED

MATERIALS

1.1 Introduction

The characteristic dependence of ultrasonic velocity on stress has long been thought

promising for residual stress measurements in materials. Reviews of the theory and

experimental methods have been given by Pao et al. [1], Cantrell and Salama [2] and

Thompson et al. [3]. The major problem in the practical utilization of most of these

techniques is the necessity of separating the effects of texture (anisotropy) and stress

on the measured ultrasonic velocity. In most cases the materials under consideration

have unknown anisotropy and even if the anisotropy is small its effect cannot be

neglected in stress measurements.

A few methods have been proposed to overcome this difficulty. Thompson et



al. [6] considered the difference of two SH-waves propagating in the plane of the

material in orthogonal directions. They showed that for this difference the effect of

anisotropy is reduced by an order of magnitude and for small anisotropy it can be

neglected. Also they demonstrate that the stress and anisotropy terms have different

angular dependencies which can be used for their separation. King and Fortunko

[4] considered obliquely incident SH-waves. Again a formula was derived with sepa-

rate anisotropic and stress terms. Man and Lu [7] generalized both techniques and

demonstrated the applicability of the ultrasonic method for stress measurements in

materials which had undergone a complicated (possibly plastic) history of loading

and unloading.

Recently we proposed [9] a different approach. We showed that the stresses in

an anisotropic material can be found simultaneously with the stress-dependent elas-

tic constants from an inversion of the Christoffel equation, using as input measured

angular dependencies of bulk wave velocities. The method is applicable for determi-

nation of both applied and residual stresses for materials of the most general loading

histories. In this paper we will fitrther explore this method and show that the abso-

lute error in stress determination using this technique is independent of the degree

of anisotropy and the stress level is defined only by the accuracy of wave velocity

measurement. The feasibility of the experimental application of this technique is also

demonstrated. Since velocity changes due to stress are small (typically below 0.1%)

a very precise measurement of the ultrasonic velocity is required. We discuss modifi-

cations of the experimental technique described by Rokhlin and Wang [13] and Chu

and Rokhlin [16] to achieve higher precision. As an example experimental results are

presented for stress determination in plexiglass.
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1.2 Theory of the absolute stress determination

method

To describe wave propagation in a prestressed medium we consider the prestressed

configuration as the reference configuration where the initial stress is accounted for

in the Christoffel equation for an anisotropic material under stress:

[C_jk;._.;+ (a..,:.; - pv2)6jdp_:= 0 (1.1)

Eq. (1.1)was derived by Tokuoka and Iwashimizu [81 and used by Thompson et al. [6]

and King and Fortunko [4]. Man and Lu [7] reexamined constitutive equations and

extended the applicability of Eq. (1.1) to general types of loading history, including

plastic deformations. The difference of Eq. (1.1) from the Christoffel equation in

an unstressed medium is the appearance of stress dependent elastic constants Ciy

instead of second order elastic constants C,_,,i and the addition of the stress term

cr,_ln,in,l in the diagonal elements. The effect of the stress term on the wave velocity

can be isolated.

Two cases of principal stress orientation with respect to material axes of symme-

try will be considered. In the first case we consider the principal stress axes oriented

along symmetry axes 1-2 of the material (Fig. 1.1) and wave propagation in symmetry

planes 1-3 and 2-3, i.e., perpendicular to the stress plane 1-2. The second case is the

general plane stressed state, i.e. when principal directions deviate from symmetry

axes (Fig. 1.2). Here we utilize waves propagating and polarized in the plane of stress

(1-2 plane).
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Figure 1.1: (a) Plane stress state, principal stress directions coincide with acoustical

axes. (b) Wave propagation planes (1-3 and 2-3 symmetry planes) are perpendicular

to the principal stress plane (1-2 symmetry plane)
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Figure 1.2: (a) Plane stress state, principal stress deviate from acoustical axes. (b)

Wave propagation plane coincide with stress plane (1-2 symmetry plane)
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1.2.1 Principal stresses along symmetry axes. Wave propa-

gation perpendicular to the stress plane

Let us consider plane stress in the 1-2 plane with the shear stress component 0.12 being

zero and wave propagation in the 1-3 or 2-3 symmetry planes (see Fig. 1.1). When

principal axes coincide with symmetry axes of an orthotropic material, the stresses do

not change the symmetry and the number of independent effective elastic constants

C,_y in the stressed solid is the same as the number of second order elastic constants

C,_.kz, which is nine.

For wave propagation in the 1-3 plane the Christoffel equation (1.1) has the

following form:

Gll - (flV 2 - o1182)

0

G13

where

G22 -- (PV 2 - 01182 )

el3

0

G33 - (pV 2 - 0.11s2)

Gll = Cll 82 -_- C55c2;

G13 = (C1_ + C55)sc;

s = sin 0;

G33 = C55 s2 -t- C33c2;

G22 = C66s 2 + C44c2;

C = COS 0.

=0 (1.2)

(1.3)

0 is the angle between the wave normal and the 3-axis [Fig. 1.1(b)]. Eq. (1.2) can be

(1.4)

decoupled leading to simple closed-form solutions for phase velocities:

toV_ L _ Gll -t- 633 _(Gll - G33) 2 nt- 4G2a s2
2 + 2 + 0"11

[V(_ T _ _11 -t-2G33 V/(_ll - _33)22 + 4G123 + 0.1182'

Here QL and QT denote quasilongitudinal and quasitransverse waves, respectively.

Both these waves are polarized in the 1-3 plane. As one can see the QL and QT
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phase velocities in this symmetry plane depend on only five parameters, namely

Cn, C33, Cla, C55 and _ru. Similarly, QL and QT phase velocities in the 2-3 plane

depend on four stress dependent elastic constants C22, C33, 6'23, 6'44 and the stress

component a22. The formulas for velocities in this plane can be obtained from

Eqs. (1.2,1.4) by permuting indices 1 and 2.

1.2.2 Principal stresses off symmetry axes. Wave propaga-

tion in the plane of stresses

Now let us consider an arbitrary plane stress state in the 1-2 plane [Fig. 1.2(a)] of an

orthotropic material; an, a22 and _r12 are the only nonzero stress components. In this

case the symmetry reduces to monoclinic and the matrix of stress dependent elastic

constants Ci,j takes the following form:

[c,:3]=

Cll C12 C13 0 0 C16

C12 C22 C23 0 0 C26

Cla C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

(1.5)

C16, C26, C36, C45 are stress-induced effective elastic constants depending only on the

shear stress component a12 (for unstressed orthotropic material these are zero).

If a12 _ 0 then the solution of the Christoffel equation in the 1-3 plane cannot

be represented in the form of Eq. (1.4) because this shear stress component alters the

material symmetry and the 1-3 plane becomes the nonsymmetry plane. As has been

discussed by Chu [15] the reconstruction of elastic constants from phase velocities in

a nonsymmetry plane is unstable. Our simulation reveals similar behavior for stress
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determination. Even very small scatter in the velocity data destabilizes the inversion

process for the stress.

These difficulties could be overcome if instead of considering wave propagation in

planes orthogonal to the stress plane, we consider the wave propagation in the plane

of the stresses [Fig. 1.2(b)]. This plane still remains the plane of symmetry and the

Christoffel equation (1.1) can again be decoupled. The solutions for quasilongitudinal

and quasishear (polarized in the stress plane) waves have the following form:

Gn + G22

2 2
pV_L

___ V/(Gll - G22) 2 -Jr- 4G122

DI'r2TVQ = Gll -t- G22 V/(Gll - G22) 2 + 4G122
2 2

where

+ (0-11- 0-22)s2 + cr22+ 20-12sc

(1.6)

+ (0-11 -- 0"22) 82 Jr- 0"22 + 20-128C,

Gll = Cll $2 -[- C66 c2 -_- 2C168c;

G22 = C66 82 -4- C22 c2 ql_ 2C268c;

G12 = (C12 -4- C66)8c --[- C16 82 --[- C26c2;

s = sin 0; c = cos 0.

1.2.3 Inversion procedure

From the measured angular velocity dependencies in the 1-3 or 2-3 plane, assuming

that the principal stress directions of the plane stress coincide with acoustical axes

(Fig. 1.1), we can determine five unknown parameters (four elastic constants and

the stress component which lies in the wave propagation plane). We employ the

least squares method for the minimization of the sum of squared deviations between

experimental and calculated velocities considering the effective elastic constants and

the stress component as variables in a multidimensional space:

1 rn

rain _(_e_ V,:C)2 (1.7)
C_4'a_iE'_'_ -2 i=l
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Here rn is the number of velocity data points for different directions, and V _ and V _

are the experimental and calculated phase velocities, respectively. This approach was

used [14, 15] to find second order elastic constants from velocity data in symmetry

and nonsymmetry planes for orthotropic materials.

The flow chart of the inversion procedure for the 1-3 plane is presented in Fig. 1.3.

Four stress dependent elastic constants (Cll, C33, C13, C55) and one stress component

(all) form a 5-dimensional space of unknown parameters. By selecting a set of initial

guesses for these parameters the velocities of the QL and QT waves are calculated and

the unknown parameters are determined by minimization of the sum of squared dif-

ferences from Eq. (1.7) between the experimental and calculated velocities at different

propagation angles.

When the reconstruction is performed from the velocity date in both 1-3 and 2-3

planes, both stress components 0.11 and 0.22 and seven of the nine stress dependent,

elastic constants (all except C12 and C66) are found.

When principal stress directions deviate from acoustical axes and we have veloc-

ity data in the plane of the sample (Fig. 1.2) the inversion procedure in the space of

unknowns C11,6'22, C12, C6_, C16, C26, an, 0.22, O"12 is nsed. The simulations show that

the difference of normal stresses (0.11 - 0.22) and the shear stress 0.12 can be deter-

mined using the inversion procedure described above and the solution is stable. If we

consider the uniaxial stress E, applied at the angle f_ (considered unknown) to the

1-axis then the value of this stress and the angle f_ can be obtained as:

l tan_l( 20._2 ) (1.8)
= 2 0.11- 0.=

E _--- (0.11 -- 0.22) COS 2_'_ + 20.12 sin 2f_. (1.9)
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i=1
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Cll, C33, C13, C55, Crll

Figure 1.3: Flow chart for determination of the stress and stress dependent elastic

constants from velocity angular dependence in 1-3 plane.
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1.3 Effect of stress level and anisotropy on the ac-

curacy of stress reconstruction

To validate our approach by computer simulation we need to create a set of synthetic

data. To do this we compute the stress-dependent elastic constants C,_y as a flmction

of stress, considering a finitely stressed hyperelastic body and assuming the second

and third order elastic constants known. While the velocity data set thus generated

is for hyperelastic material, our process for determination of stress using Eq. (1.1)

does not have this limitation and has the same applicability as Eq. (1.1) itself. Stress

dependent elastic constants can be calculated from second and third order elastic

constants and stresses. The detailed computational procedure is given in [9]. From

the known material properties (density, second and third order elastic constants)

and the plane stressed state which we assume to result from elastic deformation we

generate synthetic sets of phase velocity data {V/_:_(0e_'_)}. To simulate the effect

of experimental error we use a random flmction generator to introduce scatter of

different levels in the velocity data.

To determine the accuracy of the inversion procedure, values of stresses and

stress dependent elastic constants Cij were found for different materials and stress

levels and compared with those originally selected for the velocity data generation.

As the first example let us consider principal stresses along the symmetry axes in

the 1-2 plane, with velocity data in the 1-3 and 2-3 planes. Ultrasonic velocities in the

plane of symmetry, let us say in the 1-3 plane, will be affected by both in-plane (all)

and orthogonal-to-the-plane ((722) stress components. However our results show that

the orthogonal stress does not affect the value of the in-plane stress reconstructed from

the velocities in this plane. Thus, for example, the correct value of 1711 is determined
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independently of cr22, from the velocities in the 1-3 plane. For this reason, without

limitation of generality, we consider an example of uniaxial stress (o11) determination

from velocity data in the 1-3 plane.

One example considered is for textured aluminum with anisotropy of 1%. The

third order elastic constants were taken from the handbook [10] for isotropic alu-

mimzm. As the second example computations were made for a graphite/epoxy com-

posite which exhibits strong orthotropy. The third order elastic constants were chosen

arbitrarily assuming only that they are approximately one order of magnitude greater

than the second order elastic constants. It was observed that a different choice of third

order elastic constants did not affect the accuracy of the reconstruction process.

The computations were performed at different stress levels (0 - 300 MPa) and

different scattering (0 - 0.1%). As an initial guess for the effective elastic constants

we select the second order elastic constants at zero stress and as the initial guesses

for stress we select zero. The results do not depend on the initial guesses. For each

value of stress and scattering level 50 runs were made and the standard deviations

for reconstructed elastic constants and stresses were computed. Results for stress are

presented in Table I. The results for the alumimlm are in columns (a) and for the

graphite/epoxy are in columns (b).

Comparing the results for weakly anisotropic (textured aluminum) and strongly

anisotropic (graphite/epoxy composite) materials we conclude that the accuracy of

the stress reconstruction does not depend on the degree of anisotropy. Also for each

scattering level we have approximately the same absolute error in stress determination

regardless of the stress level.
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Table I: Standard deviations for the reconstructed uniaxial (a11) stress determined

from velocity data in the 1-3 plane for (a) textured aluminum and (b) graphite/epoxy

composite samples. Standard deviation is computed for different stress levels using

50 runs with different levels of velocity data scatter.

Original value

(711, MPa

0

i00

200

300

400

500

Standard deviation of the reconstructed o11

value from the original, MPa

no scatter

a b

0 0

0 0

0 0

0 0

0

0

0.01% scatter

a b

5 5

5 5

4 6

5 6

4

4

0.05 % scatter

a b

15 22

24 20

26 27

25 28

24

23

0.i % scatter

a b

48 39

36 56

49 56

40 56

51

54
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1.4 Conclusions

An approach for absolute stress determination from the angular dependence of the

ultrasonic velocities has been described. It is based on inversion of the Christoffel

equation in a multidimensional space formed by the stress dependent elastic con-

stants and the stress components. The technique is applicable for determination of

both applied and residual stresses. In the case when the principal plane stress direc-

tions coincide with symmetry axes of the orthotropic material, one can reconstruct

the principal stresses from the angular dependence of quasilongitudinal and quasis-

hear waves measured in these planes. When the principal axes do not coincide with

symmetry axes the angular dependence of quasilongitudinal and quasishear waves

propagating and polarized in the plane of stresses can be used to determine the shear

stress and the difference between the normal stresses. Numerical simulation using

a set of synthetic velocity data show that the reconstructed stress values are not

affected by the selection of the initial guesses and that the absolute error in stress

determination does not depend on the stress level and the degree of the material

anisotropy or texture.
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Chapter 2

EXPERIMENTAL

VERIFICATION OF ABSOLUTE

STRESS MEASUREMENT

TECHNIQUE

2.1 Self-Reference Bulk Wave (SRBW) Method

for Phase Velocity Measurement

To measure the angular dependence of the ultrasonic bulk wave velocity we used a

Self-Reference Bulk Wave (SRBW) method developed in our laboratory [13, 16] for

determination of elastic moduli of composites.

The basic idea of this method is illustrated in Fig. 2.1 where the directions of the

ultrasonic path are shown for an anisotropic sample immersed in fluid. Two steps are

required. First, the time for one ultrasonic wave reverberation inside the sample in
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the normal direction, to, is measured. This is twice the time of wave travel through

the sample and thus the corresponding wave velocity V, is calculated using the known

thickness h of the sample: V, = 2h/to. Second, the total times of flight (through water

and sample) to, for arbitrary oblique incidence at angles 0.;_are measured. Due to the

acoustic path length change in the sample, the time-delay difference Ato, between to,

and the reference time of flight t, at normal incidence is obtained (Ato, = t_ - to_)

and used for phase velocity calculation.

For a generally anisotropic material, the phase velocities at refraction angle 0r

(corresponding to the incident, angle 0s shown in Fig. 2.1) are calculated using the

phase velocity in the normal direction V, and the time-delay change Ato_ for the

rotated sample

with

Vow(Or) (_---_, Ato-(Ato+ Ato_)cosOi Ato_(2Ato+ Ato_)) -1/2= + hVo + 4h2 (2.1)

0r = sin -1 Vo_ sin 0_ (2.2)
v0

Here V0 is the sound speed in water, h is the thickness of the sample, and Ato =

2h(1/Vo- 1/1/,,). The phase velocity at normal incidence is measured by overlapping

multiply reflected signals from the front and back surfaces of the sample. Since all

measurements are made relative to the reference acoustic path in the presence of the

sample, the effect of geometric imperfections is significantly reduced [16]. Ultrasonic

measurements are made in the computer-controlled goniometer with angle resolution

and repeatability better than 0.01 deg.
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1. Measure V nat
normal incidence:

2. Measure Atoi: Ate, = t. -tei

2h
V-

n to

Sample

to

h

T/R

_ Back

reflector

T/R ,

Figure 2.1: Schematic diagram of the self-reference bulk wave method.
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2.2 Improvements of the method accuracy

For experimental stress measurement one needs to improve the precision of the SRBW

method. The precision of Vo,(Or) measurement was enhanced by increasing the pre-

cision of the parameter measurements in Eq. (2.1): h, Vo, V,,, Ato, = t, - to,:.

The thickness of the sample is measured by a micrometer with +2 p,m precision,

which for a 10 mm thick specimen corresponds to .02°,/o relative error. When a known

external stress is applied to a specimen, the Poisson thickness change is evaluated

(from the known applied stress, specimen thickness and Poisson ratio) and subtracted

from the thickness measured at zero stress.

The sound speed in water V0 depends on the water temperature which is main-

tained constant during experiment with precision =t=0.04°C. A slow temperature drift,

during measurement time is taken into account by measuring it with a J-type ther-

mocouple (iron-constantan) at each data point,. At 30°C (the usual temperature in

our experiments) the corresponding precision of the determination of the speed in

water is _ 0.1 rn/sec (.007% relative error).

Previously (for elastic constant determination purposes), the phase velocity in

the specimen at normal incidence V,, was measured by overlapping multiply reflected

signals from the front and back surfaces of the sample. The following modifications

were made to improve the precision of V, measurement:

1. A tone-burst signal with a narrow spectrum (instead of a broad band pulse)

was used. This significantly decreases signal shape distortion due to dispersion

and frequency dependent attenuation of the signals traveling different distances

inside the specimen. The time delay between signals was measured using cor-

responding zero-crossing points thus eliminating the need for signal amplitude
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adjustments in the overlapping technique.

2. When measuring the time delay between two multiple-reflection signals, we

use the zero-crossing point of the first as a trigger for a digital oscilloscope.

This automatically eliminates any signal instability due to water temperature

fluctuations and system component, vibrations. In addition, the highest possible

oscilloscope time resolution can be utilized (up to 20 psec per point).

To improve the precision of the transmission time measurement to, at oblique

incidence we introduced the second ultrasonic transducer (Fig. 2.2). The signal from

the first transducer (tone-burst) goes through both water and the sample and the

signal from the second transducer (pulse) goes through only the water. The length

of the path through the water is similar for both signals. The signal from the second

transducer is used for oscilloscope triggering to measure the first signal time delay.

Thus signal instabilities due to water temperature fluctuations and system component

vibrations are automatically compensated. In addition, the highest time resolution

of the digital oscilloscope can be utilized. Thus, the precision of determination of all

the components in Eq. (2.1) was enhanced.

It can be shown from the Christoffel equation (1.1) that the shear wave is more

sensitive to stress than the longitudinal wave. This is demonstrated in Fig. 2.3 where

velocity sensitivity to stress (OV/O¢n) is given as a fimction of the propagation angle

in the 1-3 plane. Thus, precision of stress determination is defined mostly by the

precision of the shear wave velocity. The next section discusses the phase correction

required for the shear wave velocity measurement after the first critical angle.
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Figure 2.2: Schematic diagram of the two-transducer experimental set-up for self-

reference bulk wave velocity measurement.
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2.2.1 Phase Correction for Shear Wave

An ultrasonic wave transmitted through a water/solid interface generally converts

into a quasi-longitudinal and two quasi-shear waves. After the first critical angle

the shear waves have phase shifts due to the presence of the evanescent longitudi-

nal wave near the interface. The effect is demonstrated in Fig. 2.4 on the example

of the SCS/Ti matrix composite. Fig. 2.4a shows the amplitude of the shear wave

transmitted through the solid/water interface as a function of the incident angle.

The corresponding phase shift, is shown in Fig. 2.4b. This results in an additional

time delay (Fig. 2.5a). We used the following method to correct the measured ex-

perimental data. At first wave velocity is calculated from the measured time delays

using Eq. (2.1) with no corrections. Then the elastic constants are calculated in the

first approximation without taking stress and phase shift, into account using the least

squares approximation method (Eq. 1.7). Based on the elastic constants found, we

calculate the phase shift, for the shear wave. Finally, we calculate the phase velocity

using both experimental and phase shift, data. The procedure can be repeated to

improve the precision of the velocity. The shear wave velocity correction is the most

significant after the first critical angle which is demonstrated in Fig. 2.5b.

2.3 Experimental Procedure

As an example of method application, the angular dependence of the bulk wave

velocity in the plane of symmetry of the plexiglass sample (6.5in.xlin.x3/8in.) was

measured at several levels of applied stress. An Alcoa aluminum stressing fixture

was used to apply a load to the specimen. The fixture is an aluminum ring which

keeps the sample under tension. The ring is calibrated by measuring the compressive
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angle calculated for the SCS/Ti matrix composite in 1-3 plane, a) Amplitude of the

shear wave transmitted through the water/solid interface, b) corresponding phase

shift of the shear wave.
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force necessaryto reducethe diameter of the ring in the direction of an equal tensile

force imposedon the sample. The applied load wasmeasuredas ring deflection by

a dial indicator, and then the deflectionvaluewasconvertedto a load valueusing a

stressingfixture calibration curve. The precisionof the stressapplied by a stressing

fixture wasestimatedfor a givensampleby a strain gageas -t-1 MPa.

To ensure independence of the velocity measurement at different applied stresses

we used the following procedure. The sample was placed in the Alcoa ring fixture

and loaded. Then the fixture was placed in the experimental setup and necessary

adjustments made. After velocity measurements were made the fixture was taken out

of the setup and the sample was unloaded. The filll procedure was repeated for each

applied stress, thus each measured velocity angular dependence and the reconstructed

elastic constants and stress were independent.

2.4 Experimental Results

Figs. 2.6(a,b) show the results for longitudinal and shear waves in the plexiglass

sample at different applied stresses. One can see the gradual velocity decrease with

applied stress; the angular dependence changes as well.

The absolute stress levels were determined from the velocity data using the in-

version technique discussed in the theoretical section. The comparison of the applied

and reconstructed (from the velocity data) stresses is shown in Table I. One can see

that all of the reconstructed stresses are somewhat higher than the applied stresses.

For example, for zero applied stress the reconstructed absolute stress is around 3 MPa.

All experimental points can be fitted by a dependence o11-abs= a_' + 4 MPa. Since the

method is sensitive to the total stress present in the specimen (residual plus applied)
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Table I: Comparison of applied and reconstructed-from-the-velocity-data unidirec-

tional stress in plexiglass.

Reconstructed stress, MPa Sample stress a_er subtraction Applied stress, MPa

of the residual stress of 4 MPa

3 -1 0

11 7 5

15 11 10

17 13 15

we conclude that the given specimen has a residual stress of around 4 MPa. The

absolute error in stress determination is about 2 MPa; it is evaluated numerically us-

ing the estimated random experimental error in the absolute velocity measurements

(about 0.3%). Future experiments are needed to establish the applicability of the

technique described for more practical cases.

2.5 Conclusions

An experimental technique for absolute stress determination from angular dependence

of ultrasonic velocities has been introduced. Preliminary experimental stress deter-

mination has been done in a homogeneous specimen at different applied stress levels

using a modified Self Reference Bulk Wave (SRBW) technique for the ultrasonic ve-

locity measurements. The technique was modified to improve velocity measurements:

1) introduction of a second transducer with wave path through water and 2) phase

correction of the shear wave transmitted though the specimen. Each velocity mea-
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surement has been performed with independent sample alignment and stressing. The

stress is determined from inversion of the Christoffel equation in a multidimensional

space formed by the stress dependent elastic constants and the stress components.
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Chapter 3

APPLICATION TO

DETERMINATION OF

RESIDUAL STRESSES IN

COMPOSITES
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3.1 Introduction

High temperature composites have a potential to provide significant performance

improvement and weight, reduction in aircraft, engines and other structures. For suc-

cessflll application of these materials in different environments their mechanical prop-

erties, life capability and reliability must be well known. The high cost of structures

engineered from these materials makes experimental life determination very difficult.

Thus NDE of such composite structures becomes very important.

The metal matrix (MMC) and intermetallic (IMC) composites are manufactured

at elevated temperatures. Due to thermal expansion mismatch between fibers and

matrix the residual stresses occur during the material cooling from processing to room

temperature. The residual stresses influence the properties of MMC and IMC com-

posites. The levels of these stresses may vary significantly for different constraints,

geometries and processing histories in composite structures. These stresses can be

sufficiently large to yield the matrix material. They can also lead to matrix cracking

and fiber/matrix interface debonding, thus reducing the composite strength. Tem-

perature changes (e.g. in aircraft engines) during service also significantly affect the

distribution of the residual stresses. All that can significantly affect the performance

of structural parts made from these composites.

A brief review of existing measurement techniques and theoretical models for

residual stress assessment in composites is presented in Section 3.2. It shows that

there is still a great, need for less expensive in situ techniques for nondestructive

residual stress determination in composites. This makes ultrasonic methods very

attractive. It has been demonstrated that, ultrasonic wave velocity measurements can

be successflflly used for characterization of fiber-matrix interphase [11] and fatigue

damage [12] in high-temperature composite materials.
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The purposeof the present work is to describequantitatively changesin ul-

trasonic wave velocitiespropagating through the compositematerial with residual

stressesto showthe feasibility of developmentof ultrasonic techniquesfor assessment

of residual stressesin compositestructures. In order to do that weneedto consider

wavepropagationthrough the nonhomogeneousmediumwith nonhomogeneousstress

distribution. In Section3.3 we describe governing equations for a wave propagation

in a stressed medium and boundary conditions at the interface between two stressed

media. These equations provide a foundation for the description of wave propagation

through multilayered stressed structure. The detailed computational procedure for

the solution of the refraction/refraction problem at the interface between two gener-

ally anisotropic stressed media is given in [17]. Generalized self-consistent multiple

scattering model [18, 19] serves as a basis for determination of velocity and atten-

uation of ultrasonic wave in unidirectional composites with multilayered fibers. We

briefly review it in Section 3.4.1. The model allows to consider an arbitrary number

of fiber and matrix phases in the analysis of wave dispersion and scattering. Applica-

tion of the model for determination of velocities in a composite with residual stresses

is described in Section 3.4.2. Calculation results for ultrasonic wave velocities in

SCS-6/Ti composite with and without residual stresses are presented in Section 3.5.

Preliminary results were given in [20].

3.2 Methods of residual stress assessment in high

temperature composite materials

With the rapid development of new composite materials in the past three decades

significant effort has been put into improving models and techniques for estimating
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residual stresses in composites.

Existing measurement techniques for residual stresses utilize X-ray or neutron

diffraction. X-ray diffraction (sin2-psi method) has been successfnlly applied to SCS -

6 reinforced titanium matrix composites by several groups of researchers [21, 22}.

They all obtained comparable results showing significant levels of matrix tension

in both fiber and transverse directions, with the fiber direction stresses being higher.

More recently neutron diffraction was developed to measure residual stresses, and used

for high temperature composites [23]. Lattice strains are determined by measuring

the shift in the diffraction peaks for the composite constituents between stressed and

stress-free samples. Neutron radiation has the advantage of deep penetration, thus

allowing the sensing of both fibers and matrix without destructive polishing.

Modeling of the thermal response in high temperature composites can be per-

formed using analytical concentric cylinder models (CCM) [24, 25] or finite element

models (FEM) [26, 27]. Today's models allow us to calculate residual thermal stresses

in high temperature composites and to explore the influence of material properties

(fibers, matrices, interface coatings) and processing (cooldown history and fabrication

temperature). Also, plastic and time-dependent deformations are included in most of

these models. The advantage of CCM is computational speed and thus the possibil-

ity to perform parametric studies of the influence of fiber and matrix characteristics

(fiber morphology, matrix yield strength) and fiber/matrix interface properties on the

level of residual stresses. The advantage of finite element, analysis is the possibility of

studying the effect of fiber packaging and different lamina orientation (i.e. cross-ply).

But these calculations require powerfifl computational resources.

Wright et al. [22] compared CCM, FEM, X-ray and neutron diffraction for differ-

ent metal matrix composite materials. There is good agreement of model predictions
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with measurements by both X-ray and neutron diffraction techniques. However neu-

tron diffraction cannot be used i_, s#,u during processing, it is extremely expensive

and can be performed only in several national laboratories and X-ray diffraction is

sensitive to only near surface stresses because of small penetration depth.

Estimation of residual stresses in SCS-6/Ti composite which arise during the

cooling process from processing temperature of 815°C to room temperature (23°C)

using CCM is presented at Fig. 3.1. We used the local/global matrix formulation of

the boundary value problem of an arbitrarily layered concentric cylinder proposed by

Pindera et al. [25]. This formulation allows easily to incorporate an arbitrary num-

ber of elastoplastic shells with temperature dependent properties into the concentric

cylinder. Fiber is considered to have multilayered structure consisting of carbon core,

SiC shell and carbon-rich coating (Fig. 3.2a). Fiber volume fraction is 0.24. Temper-

ature dependent elastic properties of Ti matrix are taken from [25]. CCM assumes

zero shear stresses, thus only nonzero stress components are axial, radial and hoop

(Fig. 3.2b). To satisfy boundary conditions at the interfaces radial stress is considered

to be continuous. The continuity of radial displacements is incorporated automati-

cally into the model. According to our calculations Ti matrix yields at 243°C. One

can see that the level of residual stresses is high and stress distribution is nonhomoge-

neous. For example compressional axial stress in SiC shell is around 1000 MPa, while

the tensile axial stress in Ti matrix is about 300 MPa. These stress levels lead to

plastic deformations and may affect the performance of structural components made

from this composite material.
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-792°C estimated using concentric cylinder model (CCM).
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Figure 3.2: SEM photograph of a SCS-6/Ti unidirectional composite sample.
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3.3 Wave propagation through a plane interface

between two anisotropic stressed media

In this section we present governing equations for a wave in stressed homogeneous

layer and boundary conditions at the interface between two stressed layers. These

equations will serve as building blocks for modeling of ultrasonic wave propagation

through and scattering from multiple interfaces between stressed fiber and matrix

layers.

To describe the wave propagation in a prestressed medium the approach pro-

posed by Man and Lu [7] is used. The prestressed configuration is the only reference

configuration in this approach and the initial stress is included in the constitutive

equation:

_,:j= _o + c_j_,,_:,+ u_,_:_°j,. (3.1)

where a_,j is the first Piola-Kirchhoff stress tensor, a,i° is the initial static stress, _ij

is the elastic strain due to wave propagation, u,,:,k is the displacement gradient and

C_:y_:lis the fourth rank tensor of stress dependent elastic constants. Eq. (3.1) gives

the relation between stresses and displacements which arise due to wave propagation

in the prestressed medium. It is an analog of Hook's law for the unstressed case. In

generM the stress crij can be both applied and residual since there is no restriction

that the resulting deformation be elastic.

The equation of motion has the following form:

a,_j,j = p_. (3.2)

Using (3.1), (3.2) can be rewritten as

0 (3.3)
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Now assuming that the material and local (over the size of the transducer) stresses

are homogeneous and using a plane wave solution for u

u_== APke _K("'x-Vt) (3.4)

where A is the amplitude of the wave, Pk is the unit displacement vector, K = Kn =

(w/V)n is the wave number, V = Vn is the wave velocity, n is the wave normal, and

x is the position vector, one has the Christoffel equation for an anisotropic material

under stress:

+ pv2)6jk]p = 0. (3.5)

Eq. (3.5) has nontrivial solutions when the determinant is equal to zero

lajk--pV2 jkl =0 (3,6)

where G is the generalized Christoffel tensor with components

Gjk = (Cijkl "3r-aO6jk)n,:nl,. (3.7)

It can be shown that, G is symmetric (Gij = Gj_) and the eigenvalue problem has

three real solutions as for an unstressed medium.

Let, us consider a plane interface between two generally anisotropic stressed me-

dia. _ is the vector normal to the interface (Fig. 3.3). Index 'T' refers to the upper

medium and "II" to the lower medium.

for upper and lower media respectively.

0 0
The initial stresses are (a,:3)i and (o-ij)H

For a static stressed state the boundary

conditions represent, the continuity of the traction forces:

0 0
(O'ij)i l_j = (O'ij)i I l]j. (3.8)

Consider a monochromatic plane wave (3.4) propagating from the upper to the lower

medium. The boundary conditions at the interface represent continuity of displace-

ments and traction forces. In the general case, for a wave incident from the upper
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medium thereare threereflected(in uppermedium,a = 1,..,3) andthree transmitted

(in lower medium, a = 4, ..,6) waves.The boundary conditions are:

3 6

uinC + E U°_ = EO °_

a=l _=4

3 6

inc E c_ E aorik l] k -_- O'iklY k _ CrikV k

a= 1 c_=4

(3.9)

Using Eq. (3.1) and taking into account static boundary conditions (3.9) each of the

terms a,:juj is equal to

0
aijL] j : Cijklekll]j "_- Ui,kO'kjlgj (3.1o)

Note that, in comparison with the boundary conditions for traction forces in the un-

stressed case, the elastic constants are replaced with stress dependent elastic constants

and an additional term 0ui,ka_yj appears. Boundary conditions for displacements are

the same as for the unstressed state.

3.4 Multiple scattering models

An ultrasonic bulk wave propagating through the composite averages the properties

of the constituents. In order to describe this averaging quantitatively and assess the

effect of stresses in constituents on it we need to consider wave interaction with a

multilayered structure of a complex geometry.

3.4.1 Generalized Self-Consistent Multiple Scattering Model

Interference of a wave scattered from different fibers in the composite resulted in the

scattering induced wave attenuation and dispersion. To calculate the velocities of

ultrasonic waves propagating in the direction perpendicular to the fibers in a uniaxial

composite a modified Waterman-Truell multiple scattering model [18, 19] is used.
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In the Waterman-Truellmodel [28]the wavenumberis found by averagingajoint

probability distribution overall scatterers.For a unidirectional compositewith iden-

tical fibers, the multiple scatteringfield yields a complexwavepropagation constant

fl = a_/½ + ic_ as

(fl)2 -- [1 2 i r_J(0)]2 - [2 i r_kJ(1r)]2 , (3.11)

C

where n8 7rr} is the number of fibers per unit area, rl is the fiber radius and c is the

fiber fraction; k = k:" is the wave number of the matrix, and f(0) and f(Tr) are the

forward and backward scattering amplitudes calculated from a single fiber embedded

in a matrix with wave number k as shown in Fig 3.4a. One sees from equation (3.11)

that both V_ and c_ are dependent on frequency.

The solutions (3.11) exhibit low-frequency velocity limits different from those pre-

dicted by the well-known static solutions (for example the generalized self-consistent

model (GSCM) [29]). To satisfy the correct static limit the Waterman-Truell model

could be modified as shown at Fig. 3.4b where the composite cylinder consisting of

the multilayered fiber as the core and the matrix material as the annulus is considered

embedded in the effective medium. The effective medium properties are the same as

those of the composite and assumed to be unknown and have to be determined. The

forward and backward scattering amplitudes f(0) and f(7c) are found for scattering

from the composite cylinder by waves incident from the effective medium with wave

number k ¢ and (3.11) is solved in a self-consistent manner which requires fl = k e. In

this way, all the static solutions given in [29] match with the static limits of the lon-

gitudinal and transverse wave velocities. This dynamic model was developed by Mal

and Yang [30] for study of SH shear wave propagation, and by Huang and Rokhlin

[18] for longitudinal and SV shear waves propagation in composites. Fig. 3.5 shows

the comparison of experimental results (dots) and theoretical prediction by GSCM
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models.
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Waterman-Truell solution (solid line) for a longitudinal wave propagating perpendic-

ular to fibers in SCS-6/Ti composite. One can see that experiment and theory agree

well.

3.4.2 Application of the Model for a Stressed Composite

The above model could be modified and used to estimate wave velocities in the

stressed composite. As an example we will consider the 4-phase SiC/Ti composite

with residual stress distribution shown at Fig. 3.1.

First stresses are discretized. Each phase is divided into several layers and it

is assumed that stresses are constant within each layer taking for the stress level

the average of values on the inner and outer boundaries (Fig.3.6). By doing so, a

4-layered system is substituted by n- 1 layers. Index 1 refers to the fiber core,

index n - 1 represents the outer matrix layer and index n refers to the effective

medium. Each layer j is characterized by the elastic properties of the corresponding

phase and by three discretized stress components (radial, axial and hoop) which are

assumed to be constant through the layer. Each layer is considered to have isotropic

properties in the transverse (with respect to the fiber direction) plane. In the presence

of residual stresses isotropy is violated since the radial and hoop stresses are different.

However radial symmetry still holds. Since elastic field is decomposed to cylindrical

waves propagating in the radial direction the multiple scattering mainly depends on

the material properties which define velocities of longitudinal and shear waves in

radial direction. From the solution of the Christoffel Eq. (3.5) the velocities of the

longitudinal and shear waves in the radial direction are:

o pV_ Gt, (3.12)pV/ = Crr + ar_, =
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where Crr and Gt are the radial and transverse shear stress dependent elastic con-

0 is the radial component of the residual stress. Stress dependent elasticstants and _r_

constants can be determined from second and third order elastic constants and stresses

assuming that the deformation is hyperelastic. Formulas for stress dependent elastic

constants are presented in [9].

The multiple scattering model described in the previous section assumes isotropy

of each layer in the transverse plane. Since most of the scattering occurs within small

angular range from radial direction we assume that isotropic moduli for each layer

are equal to those which define longitudinal and shear wave velocities (3.12) in the

radial direction in the anisotropic actual layer. One can define the effective radial

C_[ f = C_ + a,.r° and transverse shear Gt ff = Gt, moduli. The effect of residual

stresses is included in stress dependent elastic constants Cr_ and Gt and as a direct

0 in C_/.stress term O'rr

Thus, 4-phase composite with residual stresses is approximated by (v.-1)-layered

composite system, where the properties of j-th layer are (C_[.f)j and _,_/_eY/_.jj. The

Generalized self-consistent multiple scattering model described in the previous sec-

tion can be applied to this system to determine the dispersion of longitudinal and

shear (polarized perpendicular to the fiber direction) waves propagating normal to

the fibers.

To illustrate that the error in velocities of scattered waves introduced by isotropic

approximation is small, we calculated longitudinal and shear wave velocities in the

Ti matrix at different propagation angles a with respect to the normal to the fiber

direction (Fig. 3.7). Axial stress of 300 MPa, radial stress of 250 MPa and hoop

stress of 200 MPa were assumed in the matrix. These are averaged values of residual

stresses predicted for the Ti matrix using CCM (Fig. 3.1). The results are presented at
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Fig. 3.8a,b for longitudinal and shear wave velocities respectively. Dotted line shows

velocities in unstressed material, dashed line represents the isotropic approximation

for the stressed case (which is described above) and solid line gives the exact velocity

value predicted by the acoustoelastic theory (Section 3.3). One can see that in 10 °

range from the fiber normal the difference between the exact solution and isotropic

approximation is only few meters per second for longitudinal wave. For shear wave it

is even smaller. Thus, the assumption about isotropic properties of each layer in the

transverse plane is reasonable.

3.5 Simulation results

The approach described in the previous section was utilized to determine wave velocity

changes due to the presence of thermally induced residual stresses in the 4-phase

SCS-6/Ti composite, consisting of carbon core, SiC shell, carbon-reach coating and

titanium matrix. The residual stresses were estimated using CCM as described in

Section 3.2 are presented in Fig. 3.1. Elastic properties of each phase in the transverse

direction are presented in Table I. Third order elastic constants for all fiber phases

(core, shell and coating) were taken from the handbook [10] to be those corresponding

to Si and for matrix those for Ti. They are given in Table II. For stress discretization

the SiC shell and Ti matrix were each split into five layers. The carbon core was left,

intact because it has constant stresses. The carbon-rich coating is much thinner than

the other phases, so it was not split either. Thus the total number of layers was 12.

Wave velocity calculations using the model described in previous section were

performed for different frequencies. The results are presented in Fig. 3.9a,b for lon-

gitudinal and shear waves propagating in the normal to fibers direction. Shear wave
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Table I: Transversepropertiesof eachphasein a SCS-6/Ti composite.

phase C_°, GPa G°t, GPa p, g/cc

core (carbon) 49 16 1.7

shell (SIC) 446 177 3.2

interphase (carbon-reach coating) 31 4.6 2.1

matrix (titanium alloy) 193 45 5.4

r, #m

18

68

71

146

Table II: Third order elastic constants for Ti and Si.

material Cl11, GPa Cl12, GPa C123, GPa

Ti -1358 -1105 -162

Si -821 -448 -104

is polarized perpendicular to fiber direction. Five cases are considered: unstressed

composite (dashed line), the case when only axial stresses (dotted line) in matrix

and fiber are accounted for, the case when stresses are considered in matrix and

residual stress in fiber is zero (dash-dotted line), and when stresses only in fibers are

accounted for (dash-double-dotted line). Finally the effect of all residual stresses is

taken into consideration (solid line). One can see that the changes in velocities due

to the presence of stresses are of order 1%.

3.6 Summary

A numerical procedure has been developed to determine velocities of ultrasonic waves

propagating through the composites with residual stresses. The procedure is based on
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the modifiedgeneralizedself-consistentmodel. The modelaccountsfor multiple wave

scattering and multilayeredstructure of the composite.Simulation resultsperformed

for SCS- 6/Ti metalmatrix compositeshowthat changesin the longitudinal and shear

wavesin the perpendicular to fibersdirection areabout 0.5%and 2.0%respectively.
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